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Involutive automorphisms of the affine Kac-Moody 
algebra A?) 

J F Cornwell 
Department of Physics and Astronomy, University of S I  Andrews. North Haugh, S I  
Andrew. Fife KY16 9SS, UK , 

Received 10 October 1991 

AbrlracL The matrix formulation of automorphisms of an affine Kac-Moody algebra 
that was developed in a previous paper is here applied to the determination of all the 
conjugacy classes of involutive automorphisms of lhe altine Kac-Moody algebra A Y ) ,  
where i t  is compared with the application of more traditional stmctural techniques. 

1. Introduction 

In a previous paper (Cornwell [l], hereafter referred to as 'paper 1') a general 
matrix formulation of the automorphisms of untwisted affine Kac-Moody algebras 
was developed. In the present paper this is applied to the special case of AY). 
This analysis has several objectives. Not only are the results of interest in their own 
right, but as AY) is the 'simplest' untwisted affine Kac-Moody algebra it provides 
a perfect example for testing the practical applicability of the concepts of paper 1, 
and for comparing the matrix method with more traditional structural techniques. In 
subsequent papers this analysis will be extended first to AV) and then to AI') for 
values of 1 greater than two, hut it should be noted that Ai') has special features 
that are absent in AI') with 1 > 1, so AY) has to be studied separately from the rest 
of the Ai') family. 

The notations and conventions that will be employed in the present paper are 
those defined in paper 1, with the additional convention that equation labels such 
as (9) and (1.9) refer to the ninth numbered equation of the present paper and 
of paper 1 respectively. When the untwisted affine Kac-Moody algebra 2 is AY), 
the corresponding simple Lie algebra is A, ,  for which the rank 1 has value 1. The 
generalized Cartan matrix of A\') is 

A = ( - 2  - 2 )  2 ' 

The two simple roots of Ail) are a,, and a,, and as the highest root a: of A, is 
ay, the relation a,, = 6 - aH (where aH is the extension to %' of a;) implies that 
the root 6 is given by 

6 = a. + al (2) 
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and so 

c = h, = heo + he,. 

( a o , a o )  = (01, al) = (.:,a;)o = ; 

(3) 

For these simple roots 

(4) 

and 

(5)  
1 ( a 0 . q )  = (al ,aO) = - 5 .  

Let r be the two-dimensional irreducible representation of A, in which 

The value of the Dynkin index of this representation is given by y = a. This 
representation is equivalent to its contragredient representation, for (1.105) holds 
with 

c = ( '  0 -1 0 )  (9) 

Thus for AY) the set of type l b  involutive automorphisms coincides with the set of 
type l a  involutive automorphisms and the set of type 2b involutive automorphisms EO- 
incides with the set of type 2a involutive automorphisms. Consequently it is sufficient 
to consider only type l a  and 2a involutive automorphisms. The former set divide into 
two disjoint subsets with U = 1 and U = -1, whereas for the determination of the 
representatives of the conjugacy classes of the latter set it is sufficient to let U = 1. 

The outline of the present paper is as follows. Section 2 is devoted to the ap- 
plication to AY) of the ideas on Cartan presetving root transformations and Cartan 
preserving automorphisms described in section 2 of paper 1, the aim being to  see 
how far this approach can be taken in the determination of the conjugacy classes of 
involutive automorphisms of Ai'). As will be seen, this approach gives incomplete 
information, but this deficiency is remedied in the matrix formulation of the succeed- 
ing sections. In section 3 the involutive automorphisms of A\') of type l a  with U = 1 
are analysed, the investigation being extended to involutive automorphisms of type 
la with U = -1 in section 4 and to involutive automorphisms of type 2a in section 
5. The conclusions are summarized in section 6, and compared there with previous 
related work. 
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2. The set of involutive mot-preserving transformations of A?' 

2.1. Class$cation of the involuiive root-preserving tranrformations of AY) 

When k = A?), as 1 = 1, (1.8) reduces simply to no = 2 K y ~ y / ( a y ,  a:)o, and as 

(10) * O - L  0 
1 - 2a1 

it follows from (4) that 

(11) n o  no = 2 K 1  a 1  

and 

< E )  I o n 
\ U l , & '  = n l .  

Moreover, the only root preserving transformations T O  of the simple Lie algebra 
2' = A, are such that 

T O (  a;) = c a y  (13) 

where 

€ = l o r  -1. (14) 

Thus the involutive condition (1.19) is always satisfied, while the involutive condition 
(1.20) becomes K:(C + @)ay = 0, which implies that 

K Y ( €  + p )  = 0 .  (15) 

As g = 1 or -1, it follows from (13) that there are only four cases to be considered: 
(i) c = 1 and p = 1: in this case (15) implies that K: = 0 and hence SIo = 0. 

Clearly the only root transformation of this type is the idenfiy transformation 

ay-ay 6 - 6  A. -+ A,,. (16) 

(ii) c = -1 and p = 1: in this case (15) implies that K: can take any integer 
value. 

(iu) E = 1 and p = -1: in this case (15) implies that K: can take any integer 
value. 

(iv) E = -1 and p = -1: in this case (15) implies that IC? = 0 and hence 
SIo = 0. Clearly the only root transformation of this type is that associated with the 
Cartan involution of (1.75) and (1.76), which may be denoted by T,.~~~.", and for 
which 

Tcartan(Q1)  = - 0 1  Tcartan(6) = -6 ~c.,t,(Ao) = -Ao. (17) 

Some special cases of involutive root-presening transformations of types (ii) and 
(iii) will now be investigated, using the fact that (12) and (13) imply that (1.12) 
reduces to 

r0(al) = cay  - e ~ y 6 .  (18) 
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First, as the scaled root lattice Qo' of Eo consists of all linear functionals W O  

defined on that have the form 

WO = Ctzlly/(ai,ai)O} a; 
k = l  

(where each &' (for k = 1 ,2 , .  . . , I )  is allowed to take any integer value), and as 
the fundamental weights A i  of 3' are defined by 

I 

A i  = E ( ( A o ) - l ) j k  ay 
,=1 

(for k = 1 , 2 , .  . . , I ) ,  it follows that wo can be rewritten as 

I 
WO = ~ { 2 K . ; ' / ( C X ~ , a i ) 0 }  A i  

E e l  

Where 

(for k = 1 , 2 , .  . . , 1 ) .  Thus the involutive root-preserving transformation T is a 
member of the Weyl group of AV) if and only if 

no = Z C L : A ~ ~ A : / ( ~ : , ~ : ) ~  

where & is an integer. As A,, = 2, (10) and (4) imply that flo = 4pya7 ,  and 
comparison with (11) then shows that K: = 2 ~ : .  Moreover, by (1.1). as S(6) = 
6 fGi ~ ~ ~ i j ;  s E w, $ fG;;c*s :ha; ii ~ 1. l l l Y . 3  LLLC. ,,,"U,UL,"C. ,"uL-p,GaG,",,,g 

transformation 7 is a member of the Weyl group of AY) if and only if p = 1 and 
K: is an even integer. 

Th.." *La :"..,.,..*&.. .--. ".'."a-*"n 

In particular, for the Weyl reflection Se,, 

Se,(%) = 0 0  + 2a ,  (19) 

and 

S,>(al) = -a1 (20) 

c = - 1  p = l  K y  = 0. (21) 

which imply (by (18)) that 

Similarly, for the Weyl reflection Sea, 

Sa0(ao) = -00 
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and 

S m , ( a l )  = 2 a ,  + a, = -a, + 26 

€ = - l  p = l  ICY = 2. (24) 

(23) 

so that (18) implies that 

By contrast, for the root transformation p corresponding to the Dynkin diagram 
permutation a, ++ al ,  

P ( a o )  = 0 1  dol) = a0 (25) 

and thus, by (2), p ( 6 )  = 6 and p ( ~ l , )  = 6 - a l .  Consequently for this Dynkin 
diagram permutation p (18) implies that 

E = -1 p = l  ICY = 1. (26) 

(The fact that K: is odd indicates that p is not a Weyl group transformation.) 
The three foregoing examples have been special cases of the type (ii) root trans- 

formations. Examples of type (iii) transformations may be obtained by composing 
each of them with rccartm. In particular 

(Tcartan 0 sna)(~a) = - e o  - 2a1 (27) 

( 7 c a r t a n 0  smL)(al) = 0 1  (28) 

€ = l  p = - 1  IC: = 0 .  (29) 

( ~ c C a l f a " O S a o ) ( a O )  = 0 0  (30) 

(7cartan 0 Sm0)(a1) = - 0 1  - 2% = a1 - 26 (31) 

c = l  p = - 1  IC: = -2. (32) 

(Tcartan O P)(aa) = - a i  (33) 

and 

so that for T ~ = ~ ~ ~ ~  o Sol 

Similarly 

and 

so that for T~~~~~~ o SOD 

Finally 

and 
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2.2. The class$cation of the conjugaq classes of involutive rmt-preserving lrans/ma- 
riom of AY 
Tinning to the classification of the conjugacy classes of the group of involutive root- 
preserving transformations of A!'), (1.16)-(1.18) imply that r1 = 4 ~ ~ 4 - l  if and only 
if 

and 

I11= I12 .  (38) 

Here is is assumed that rl = { ~ ; , n , , p , } ,  T~ = {720,nZrp2}, and q5 = 
that 7:(ay) = c l a y ,  ri(ay) = c z a y ,  q5'(a:) = e 'ay (cf (13)), and that ill  = 
2n:,ay, Q, = 2 ~ 7 ~ a 7 ,  and @ = 2 n n 4  (cf (11)). 

Clearly (36) and (38) imply that 
(1) the identity root transformation of (i) is in a conjugacy class of its own; 
(2) the involutive root transformations of (ii) can only be conjugate to other root 

(3) the involutive root transformations of (iii) can only be conjugate to other root 

(4) the root transformation rCcartan of (iv) is in a conjugacy class of its own. 
It remains only to show that the sets (ii) and (iii) each contain two conjugacy 

classes. ('Ib see this consider (37) for the set (ii). The right-hand side of (37) is 
always even, so if .Yz is even then KY, is even, and if .Fz is odd then tcY1 is odd. 
Moreover, every even value K?, can be obtained from K:, = 0 hy an appropriate 
choice of and K". Similarly, every odd value IC?, can be obtained from nFz = 1 by 
an appropriate choice of and K". Thus the set (ii) contains IWO conjugacy classes. 
The same arguments show that the set (iii) contains IWO conjugacy classes.) 

These considerations show that the group of involutive root-preserving transfor- 
mations of AI') contains six conjugacy classes. At least one representative has already 
been identified for each of these classes. 

Each involutive root-preserving transformation of AY) corresponds to one or 
more involutive automorphisms of A\'). However, it is possible for two involutive 
automorphisms associated with involutive root transformations that are not conjugate 
(as root transformations) to be conjugate within the groups of automorphisms. That 
is, two Cartan-preserving automorphisms can be conjugate via an automorphism that 
is not a Cartan-preserving automorphism. 

The investigation of this matter will start in the next two sub-sections, but, as Will 
soon become apparent, the full study of the problem requires the matrix formulation. 
That will be the subject of the section that follows. 

2.3. Involutive Cartan-preserving aurontorphisms of AY) 
(1) The object of this subsection is merely to list all the involutive automorphisms Of A, 

of the form $ = $, exp(ad(h')) (where h' E Yt') which correspond to each 7 of the 
group of involutive root-preserving transformation of A!') that is listed explicitly in 

transformations of (ii); 

transformations of (iii); and 
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the previous subsection. It will be recalled that h‘ may be assumed to satisfy (1.55), 
and must be such that (1.59) holds. Also (1.31). (1.29) and (1.39) reduce (on using 
(11) and (4)) to 

@ ( h m 0 )  = ( P  + W K ? ) h m o  + ( P  + W K ?  - e)hml  

+(ha1)  = -epK?hmo + ( e  - epK?)hm,  
(39) 

@(c)  = PC 

+(d)  = p d +  2n?h,, - /L (K?) ’c .  

(1) 7 is the identity mapping: In this case (1.55) does not imply any restriction 
on the value of h‘, and (1.59) implies that there are four distinct involutive auto- 
morphisms which correspond to exp{a , (h ’ ) ]  = fl and e x p { a , ( h ’ ) ]  = f l .  These 
are: 

(i) e x p { a , ( h ’ ) ]  = 1 and e x p { a l ( h ’ ) ]  = 1: In this case $ is the identity 
mapping, for which 

@(h,J = hmo + ( h e , )  = ha, 
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(2) T = Sa,: It follows from (ZO), (19), (21) and (1.37) that the most general 
h’ E X that satisfies (1.55) is h‘ = no(huo + ha, )  + n d d  = noc + ndd (where no 
and x d  are arbitrary complex numbers), for which ao(h’) = x d  and al(h’) = 0. 
Consequently there are only two distinct involutive automorphism, which correspond 
to exp{cr , (h ’ ) }  = &l and e x p { a , ( h ’ ) }  = 1. These are: 

(i) e x p { a , ( h ’ ) }  = 1 and e x p { a l ( h ’ ) )  = 1: In this case 

$ ( c )  = c 

$(e , , )  = - e*.+zo, 

$ ( d )  = d 
, I  (45) 

W e - o o J  = - e - ( a o t z a l )  

+ ( e , , )  = e - * ,  + ( e - , , )  = e , , .  

(3) T = Son: It follows from (22), (23), (24) and (1.37) that the most general 

and nd are arbitrary complex numbers), for which ao(h‘) = 0 and al(h‘) = nd.  
Consequently there are only two distinct involutive automorphisms, which correspond 
to e x p { a , ( h ‘ ) )  = 1 and e x p { a , ( h ’ ) }  = =kl. These are: 

h’ E X that Satisfies (1.55) is h’ = ( K l  - 2K,4)hu0 K l h , ,  K d d  (where nl 

(i) e x p { a , ( h ‘ ) }  = 1 and e x p { a , ( h ‘ ) }  = 1: In this case 

(4) T = p: It follows from (25), (26) and (1.37) that the most general h‘ E 
X that satisfies (1.55) is h’ = ~ , ( h ~ ~  + h a , )  = K,C (where K ,  is an arbitrary 
complex number), for which ao(h’) = 0 and al(h’) = 0. Consequently there is only 
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one distinct involutive automorphism which corresponds to exp{a,(h‘)] = 1 and 
exp{a,(h’)}  = 1. This is: 

( 5 )  T = T ~ ~ ~ ~ ~ ~ :  In this case +T(h’) = -h‘ for all h’ E X, so the most general 
h’ E X that satisfies (1.55) is h‘ = 0. Consequently there is only one distinct invo- 
lutive automorphism which corresponds to exp{a,(h’)} = 1 and exp{a,(h‘)} = 1. 
n.iS B the cartan invo!.ti!2!! 

4cartm(hu0) = -ham 

4 c m t m ( C )  = -c 

4cartm(euo) = e--ao 

4cartm(eu,)  = e- , ,  

4Cartm(h,,) = -ha* 

4cartm(e-ao) = eao 

4cartm(e-,,) = em1. 

(49) 
4c,,tm(d) = -d  

(6 )  T = T~~~~~ o Sa,: It follows from (27), (28), (29) and (1.37) that the most 
general h‘ E x that satisfies (1.55) is h’ = n,h,, (where K ,  is an arbitrary complex 
number), for which ao(h‘) = - K , / 2  and u l ( h ‘ )  = ~ , / 2 .  Consequently there. are 
only two distinct involutive automorphisms, which correspond to exp{a,(h’)] = 
exp{a,(h’)} = kl. These are: 

(i) exp{a,(h’)} = 1 and exp{a,(h‘)} = 1: In this case 

(7) T = T,,,,, o Smo: It follows from (30), (31). (32) and (1.37) that the most 
general h‘ E x that satisfies (1.55) is h‘ = nohvo (where K, is an arbitrary complex 
number), for which a,(h’) = n,/2 and a,(h’) = - ~ , / 2 .  Consequently there are 
only two distinct involutive automorphisms, which correspond to exp{a,( h‘)} = 
exp{al(h’)}  = kl.  These are: 
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(i) e x p { a , ( h ' ) )  = 1 and e x p { a , ( h ' ) )  = 1: In this case 

+(h,J = + ( h e , )  = - h e ,  

+ ( e u o )  = eo0 

$(e, ,!  = e-jlroo+oLj 

+ ( c )  = - e  + ( d )  = -4h, ,  + 4 c  - d 

$(e- , . , )  = e--(Lo 

$(e - - ,?  = e200+o,. 

(ii) e x p { a o ( h ' ) )  = -1 and e x p { a l ( h ' ) }  = -1: In this case 

$(heal = 

$ ( e u o )  = -eeo = -e-,o 

1L(h,,) = - 2 b 0  -hul  

$ ( e )  = - c  + ( d )  = -4ho l  + 4 c  - d 
(53) 

$ ( e , , )  = -e-(Zw+,,) = -ezo.+a,.  

(8) 7 = T , - ~ ~ ~ ~  o p: It follows from (33), (34), (35) and (1.37) that the most 
general h' E X that satisfies (1.55) is h' = ~ , ( h ~ ~  - h,,) (where tc0 is an arbitrary 
compiex number), ior which ao(h')  = K ,  and al (h: )  = -K, .  Consequenriy rnere 
are only 2 distinct involutive automorphisms, which correspond to e x p { a , ( h ' ) }  = 
e x p { a l ( h ' ) )  = & I .  These are: 

(i) e x p { a o ( h ' ) )  = 1 and e x p { a l ( h ' ) }  = 1: In this case 

2.4. Preliminary invesrigalion of the conjugacy classes of involutive automorphism of 
A(') 

1 

The object of this subsection is to investigate what can be achieved in the study Of 

the conjugacy classes of involutive automorphisms of AY) using structural methods 
alone. The starting point is the obsewation by Gantmacher (21 that every inner au- 
tomorphism of a semi-simple Lie algebra (including those associated with the WeYl 
reflections) is conjugate to 'chief inner automorphism' of the form e x p { a d ( h ' ) }  (for 
some h' of its Cartan subalgebra). However, a chief inner automorphism cannot be 
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conjugate to an automorphism associated with a Weyl reflection via a Caftan preserv- 
ing automorphism (as in (1.56)), because this requires that the corresponding root 
transformations must be conjugate, which is impossible as exp{ad(h' ) }  corresponds 
to the identity root transformation, which, as noted earlier, is in a class of its own. 

The first stage is to determine explicitly the non-Cartan-preserving automorphism 
that conjugates the involutive automorphism +!a of the simple complex Lie algebra 
A, corresponding to ro = So to a chief inner automorphism of A,. In fact this 
non-Cartan-preserving automorphism has been found previously (Cornwell [3, 41) for 
other reasons. Denoting it by If&, all that is required is to translate the previously 
quoted form into the conventions of paper 1 (and of Cornwell [5]),  in which it 
becomes 

9: 

(56) 
V:: = exp{ad(ia(e,,; 0 - e - , : ) ) }  0 

a = 7r/{s(a:,a;)o]"2 = i7r. 
where 

(57) 

Then 

With the involutive automorphism & of the simple complex Lie algebra A, cone- 
sponding to +' = S$ being defined by 

it is easily checked that by acting with both sides on h&, e:;, and in turn that 

V.; o t& o (V::)-' = exp{ad(hO')] 

exp{a: (h0' ) ]  = -1 (61) 

(60) 

where hot is such that 

which establishes the conjugag stated earlier. 

be the WO automorphisms of AI') that are obtained from $,". by the definitions 
The next stage is to extend these ideas to  the Kac-Moody algebra A?). Let +:$ 

@$(tj a a") = (k1)jt' @ @.(ao) (62) 
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(for all a" E A ,  and every integer j), 

+:$(c)  = c 

and 

+:$(d )  = d .  (a) 
Then $:$ and +:; are the two involutive automorphisms of A?) that are associated 
with the Weyl reflection Sm, and which were listed previously as (44) and (45) 
respectively. Similarly, let V:? be the automorphism of,Av) that is obtained from 
V,o by the definition 

V : ~ ( t j 8 Q " ) = ~ ' @ V ~ ~ ( Q D )  (65) 

(for all a" E A, and every integer j), 

V$(.) = c 

and 

V$(d) = d .  

Then 

V$ o +Lo,: o (V:')-' = exp{ad(h*')} 

where h*' are elements of ,%! such that 

exp{cr,(h*')) = -1 exp{a,(h*')}  = +l. (69) 

This establishes that the automorphisms (44) and (45) associated with the Weyl re- 
flection Sal are conjugate to the automorphisms (43) and (41) respectively. 

of A!') of (1.75). (1.76) and (49) can be treated in 
a similar way. As 

The Cartan involution 

'&.rt,n(tJ 8 Q") = 1-' 8 (&,,t,,(Q")) (70) 

(for all U" E A ,  and every integer j), where &,,, is the Cartan involution of A, ,  
which actually coincides with the involutive automorphism +'$ of the simple complex 
Lie algebra A ,  corresponding to 7" = So,  that was defined by (59), it follows from 

a, 
(60) that 

v:; 0 +cart, 0 Pa;) " ( 1  J @ a " )  = t -J @ (exp{ad(h"'))(a")) (71) 

(for all U" E A, and every integer j). Consequently o &artan 0 (V,;)-l is 
identical to the automorphism (51) that is associated with the root transformation 
7 = T ~ ~ ~ ~ ,  o Sa,, so &artan is conjugate to (51). 
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Because the Weyl reflections Sml and Sao are conjugate via root transformation 
p corresponding to the Dynkin diagram permutation eo U a, of (25), the automor- 
phisms (44) and (45) associated with S-, are conjugate via the corresponding auto- 
morphism (48) to the automorphisms (46) and (47) associated with Sao. Similarly, 
the automorphisms (50) and (51) associated with ' T ~ ~ ~ ~ ~  o Se, are conjugate via the 
automorphism (48) to the automorphisms (52) and (53) associated with ' T ~ ~ ~ ~ ~ ~ o  Sao. 

These arguments allow one to deduce the following se6 of conjugate involutive 
automorphisms of AV): 

(i) (40) (which is certainly in a class of its own as it is the identity); 

(iii) (42); 
(iv) (43), (40, (46); 
(v) (48); 
(vi) (49h (SI), (53); 

(50). (52); 

(55). 

(io ( 4 1 ~  ( 4 5 ~  (47); 

(viii) (54); and 

However, it remains to be determined whether these sets form disjoint classes. As the 
method just given relies heavily on inspired guesswork, it does not provide a sysfematic 
means of establishing whether two automorphisms are conjugate. Fortunately the 
matrix formulation does provide such a systematic treatment, as will be demonstrated 
in the following sections. Indeed the matrix formulation will show that there are 
only seven conjugacy classes of involutive automorphisms of AY), and the analysis of 
sections 4 and 5 will demonstrate that the members of the above sets (iii) and (iv) are 
mutually conjugate, and that the members of these sets (viii) and (ix) are mutually 
conjugate. 

3. Study of the involutive automorphisms of A y )  of type la with U = 1 

3.1. Determination of fhe involutive automorphism of A Y )  of fype l a  with U = 1 

As mentioced in section 2 of paper 1, every conjugacy class of involutive automor- 
phisms of 2' contains at least one Cartan-preserving involutive automorphism. For 
& = Ai') each such Cartan-preserving involutive automorphism is associated with a 
root transformation ro of A, such that ro(a!) = *ay. These two cases will first be 
considered separately: 

3.1.1. Involutive automorphisms of A Y )  of fype l a  wifh U = 1 such thaf ro(ay) = ay. 
The most general 2 x 2 matrix U(t) that satisfies 

with both U(t )  and U(t)- '  having entries that are Laurent polynomials in t is given 
by 
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where 7; and q; are arbitrary non-zero complex numbers and k; and 12; are arbitrary 
integers. However, (1.111) shows that (qi)-lt-kyU(t) and U(t) both give the same 
automorphism, so on putting q, = ( q ; ) / ( q ; )  and k, = k; - k;, it follows that 
the most general automorphism of type l a  with U = 1 such that ro(ay) = a: 
corresponds to 

where q, is an arbitraw non-zero complex number and k, is an arbitrary integer. The 
involutive condition (1.136) now reduces to U(t)' = q t k l ,  where q is an arbitrary 
non-zero complex number and k is an arbitrary integer, which implies that k, = 0 
and qz = fl. Thus there are only two involutive automorphisms of type l a  with 
U = 1 such that @(ay) = ay, and (by (1.67), (1.71), (1.73)) and (1.141)) these are: 

(i) the identity automorphism (40), which corresponds to 

(74) 

(ii) the involutive automorphism (43), which corresponds to 

U ( t ) =  ( 1  ) u = l  ( = O .  
0 -1 (75) 

3.1.2. Involutive automorphisms of A y )  of type l a  with U = 1 such that ro(a:) = -U:. 
The most general 2 x 2 matrix U ( t )  that satisfies 

U ( t )  hO,:U(t)-' = -h:o (76) 

with both U ( t )  and U(t)-l  having entries that are Laurent polynomials in t is given 
bY 

where qi and q; are arbitrary non-zero complex numbers and k; and k; are arbitrary 
integers. However, (1.111) shows that ( q ; ) - l t - k i U ( t )  and U ( t )  both give the same 
automorphism, so on putting q, = ( q ; ) / ( q ; )  and k, = k; - k;, it follows that 
the most general automorphism of type la  with U = 1 such that  ay) = -ay 
corresponds to 

where qz is an arbitrary non-zero complex number and k, is an arbitrary integer. The 
involutive condition (1.136) again reduces to U( t ) '  = q t k l ,  where q is an arbitrary 
non-zero complex number and k is an arbitraly integer, but this now imposes no 
additional constraints on k, and q2.  However the involutive condition (1.138) implies 
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that € = - ( k z ) 2 .  Thus there is a family of involutive automorphisms of type la with 
U = 1 such that ro(ay) = -ay. By (1.67), (1.71), (1.73) and (1.141) these are: 

Comparison with (39) shows that this corresponds to the involutive automorphism 
considered in the previous section with 

E = -1 tc:=k2 p = l .  (79) 

Three special cases are worth noting: 
(i) The choice k, = 0 and q2 = -1 gives 

which corresponds (by (78)) to the involutive automorphism (44); 
(U) The choice k2 = 2 and q2 = -1 gives 

which corresponds (by (78) to the involutive automorphism (46); 
(C) The choice k, = 1 and 7, = -1 gives 

which corresponds (by (78)) to the involutive automorphism (48). 

3.2. Idenrijicalion of conjugacy classes of involurive automorphisms of Aj‘) of type l a  
with U = 1 

It will now be shown that there are three conjugacy classes of  involutive automor- 
phisms of AY) of type l a  with U = 1. These three classes contain the following 
Cartan-presening automorphisms: 

(i) the identity automorphism (40), which corresponds to the type l a  automor- 
phism with U(t) ,  U, and ( being given by (74). 
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(ii) the family of involutive automorphisms (78) corresponding to the type l a  
automorphism with 

(83) 

where q2 is an arbitrary non-zero complex number and IC, is an arbitrary even integer, 
logerher with the involutive automorphism (43), which corresponds to 

(84) 

(iu) the family of involutive automorphisms (78) corresponding to the type l a  
automorphism with 

(85) 

where q2 is an arbitrary non-zero complex number and k, is an arbitrary odd integer. 
It is clear that the identity automorphism is in a class of its own, so attention will 

he concentrated on establishing that the other two sets just quoted do indeed form 
conjugacy classes. 

Firstly, as 

with 

where 

q = (q2) ' I2  k = 'k 2 2  (88) 

and as all the entries of the matrix S ( t )  of (87) are Laurent polynomials in t if IC, 
is even, it follow from (1.158) that if k, is even the involutive automorphism (78) 
corresponding to (83) is conjugate to the involutive automorphism (43) corresponding 
to (84) via a type l a  automorphism belonging to the matrix S ( t )  of (87) and to s = 1. 

"hrning to the case in which k, is odd, it is clear that the argument that has just 
been given fails, for some of the entries of the matrix S ( t )  of (87) are no longer 
Laurent polynomials in 1. However, as 

with 



Involutive automorphisms 0fAj') 2351 

where 

1) = i(1),)"' k = $ ( k 2  - 1) (91) 

and as all the enaies of the matrix S ( t )  of (90) are Laurent polynomials in t if 
k, is odd, it follows from (1.158) that if k, is odd the involutive automorphism (78) 
corresponding to (83) is conjugate to the involutive automorphism (48) corresponding 
to (82) via a type la  automorphism belonging to the matrix S ( t )  of (W) and s = 1. 

It remains only to show if k, is an odd integer then none of the involutive 
automorphisms (78) corresponding to (85) can be conjugate via a type l a  or 2a au- 
tomorphkm to the involutive automorphism (43) corresponding to (84). This follows 
from (1.158) and (1.178). for both of these conjugacy conditions can be cast in a form 
which would require that the matrix U ( 1 )  of (85) be equivalent through a similarity 
transformation to a diagonal matrix with diagonal entries that are Laurent polynomi- 
als in 1. This requires that the matrix U ( 1 )  of (85) must have eigenvalues that are 
Laurent polynomials in 1 ,  which is not possible if k, is odd. 

4. Study of the involutive automorphisms ofA(,L) of type la with U = -1 

4.1. Determination of the involutive automorphisms of A Y )  of ype  l a  with U = - 1 

As in the previous section the Cartan-preserving involutive automorphisms associated 
with the root transformations T' of A, such that .'(CY;) = ay and  ay) = -ay 
will first be considered separately: 

4.1.1. Invohrive automorphisms of A Y )  oftype l a  with U = -1 such that r a ( a ; )  = 
ay. Consideration of the most general 2 x 2 matrix U(t) that satisfies (72) again 
leads to the conclusion that the most general automorphism of type la  with U = -1 
such that re(a:) = ay corresponds to (73), where again q2 is an arbitraty non-zero 
complex number and k, is an arbitrary integer. The involutive condition (1.136) now 
reduces to U(t)U(-1) = @l, where 1) is an arbitrary non-zero complex number 
and k is an arbitrary integer, which implies that k, = 0 and q, = f l .  Thus there are 
on4 two involutive automorphisms of type la  with U = -1 such that .'(ay) = ay, 
and (by (1.67), (1.71), (1.73) and (1.138)) these are: 

(i) the involutive automorphism (42), which corresponds to 

(92) 

(ii) the involutive automorphism (41). which corresponds to 

U ( t ) = ( l  0 -1 O )  u = - 1  t = o .  (93) 
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4.1.2. Involuiive auiomorphisms of AY) of ype l a  with U = -1 such ihai ro(ay) = 
-a:. Consideration of the most general 2 x 2 matrix U(t)  that satisfies (76) again 
leads to the conclusion that the most general automorphism of type la with U = -1 
such that r"(a7) = a: corresponds to (77), where again q2 is an arbitrary non-zero 
complex number and k ,  is an arbitrary integer. The involutive condition (1.136) again 
reduces to U(t)U(-1) = q t k l ,  where q is an arbitrary non-zero complex number 
and k is an arbitrary integer, but although this imposes no additional constraint qa 
it does require that k, must be even. The other involutive condition (1.138) again 
implies that = - ( k 2 ) 2 .  Thus there is a family of involutive automorphisms of type 
la  with U = -1 such that ~ " ( a : )  = -a;. By (1.67), (1.71) and (1.73) and (1.138) 
these are: 

+(Lo) = (1  - k2)ha0 + (2 - k&,, 

+(ha,) = k2ha0 + (k2 - l)h,, 

+ ( c )  = c 

+ ( e a o )  = ( q 2 ) -  e ( 1 - k 2 ) , . t ( 2 - k > ) . ,  

+ (e - .o)  = q 2 e - ( l - k ~ ) . ~ - ( 2 - L ~ ) , ,  

+ ( e , , )  = -q2ek2,0+(k2-1)a* 

+ ( e - a z )  = - ( q 2 ) - 1 e - k l a . - ( L ~ - 1 ) a , .  

+(d)  = 2k2h,, - ( k z ) 2 c  + d 
1 

Comparison with (39) shows that this again corresponds to the involutive automor- 
phism considered in the section 2 with the identification (79). -0 special cases are 
worth noting: 

(i) The choice k2 = 0 and qz = -1 gives 

(94) 

which corresponds (by (94)) to  the involutive automorphism (45); 
(ii) The choice k2 = 2 and q2 = 1 gives 

which corresponds (by (94)) to the involutive automorphism (47). 

4.2. Identification of conjugacy classes of involuiive automorphisms of A Y )  of ype l a  
with U = - 1  

It will now be shown that there is on& one conjugacy class of involutive automorphisms 
of AY) of type l a  with U = -1. This contains of all the involutive automorphisms 
listed in the previous subsection. 

This result can be established in two stages. First, with k ,  even (as it must be 
here), the matrix S ( t )  of (87) is such that S ( t )  = S ( - t ) ,  so 
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is satisfied with the matrix S( t )  of (87) and with q and k given by (88). As all the 
entries of the matrix S( 1 )  of (87) are Laurent polynomials in t if k, is even, it follows 
from (1.158) that the involutive automorphism (94) corresponding to 

(98) 

(where q, is an arbitrary non-zero complex number and k, is an arbitrary even 
integer) is conjugate to the involutive automorphism (41) corresponding to (93) via a 
type la automorphism belonging to the matrix S ( 1 )  of (87) and to s = 1. 

The second stage is to show that the involutive automorphism (42) corresponding 
to (92) is conjugate to the involutive automorphism (41) corresponding to (93). As 

with 

where 

q = o  k = O  (101) 

it follows from (1.158) that the involutive automorphism (42) corresponding to (92) 
is conjugate to the involutive automorphism (41) corresponding to (93) via a type l a  
automorphism belonging to the matrix S ( t )  of (100) and s = 1. 

5. Study of the involutive automorphisms of AV1 of type Za (with U = 1) 

5.1. Determination of the involulive automorphisms of A Y )  of type 2a (with U = I )  

As in the previous two subsections the Cartan-preserving involutive automorphisms 
associated with the root transformations T O  of A, such that s 0 ( a ? )  = a? and 
~ ~ ( 0 ; )  = -a: will first be considered separately: 

5.1.1. Involurive automophi" of AY) of type 2a with U = 1 such that ro(ay) = a:. 
Consideration of the most general 2 x 2 matrix U(t) that satisfies (72) leads to the 
conclusion that the most general automorphism of type 2a with U = 1 such that 

= ay again corresponds to (73), where again q ,  is an arbitrary non-zero 
complex number and k, is an arbitrary integer. The involutive condition (1.142) now 
reduces to U ( 1 )  U(t-l) = q i ' l ,  where 1) is an arbitrary non-zero complex number 
and k is an arbitrary integer, which implies that 17, = ?cl but that IC, can take 
any integer value. The other involutive condition (1.143) implies that [ = (k2)2. 
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Thus there is a family of involutive automorphisms of type 2a with U = 1 such that 
ro(a; )  = ay, and (by (1.69), (1.71) and (1.73)) these are: 

+ ( h a o )  = ( b -  l ) h u o  + ( k z - 2 ) h u .  

+ ( h e , )  = -kzhuo + (1 - kz )hu l  

+ ( e )  = -c  

+ ( d ) = - 2 k z h , , + ( k z ) 2 c - d  

= % e k 2 a o - ( l - k 2 ) u , .  

Comparison with (39) shows that this corresponds to the involutive automorphism 
considered in the previous section with 

e = l  K: = -k, /I = -1 .  (103) .-.~ -~~- - . - .  . ~~ . .  ~~. ~ I X  specrai cases are wurrn nuring: 
(i) The choice k, = 0 and 7, = 1 gives 

;) u = l  c = o  

which corresponds (by (102)) to the involutive automorphism (50). 
(ii) The choice k, = 0 and q2 = -1 gives 

which corresponds (by (102)) to the involutive automorphism (51). 
(iii) The choice k, = 2 and q, = 1 gives 

which corresponds (by (102)) to the involutive automorphism (52). 
(iv) The choice k ,  = 2 and q, = -1  gives 

U ( t ) =  (1  ) u = l  < = 4  
0 - 1 2  

which corresponds (by (102)) to the  involutive automorphism (53). 
(v) The choice k, = 1 and qz = 1 gives 

which cOrrespGn!% (by (102)) !G !he inva!.tive an!nmorphism (54): 
(vi) The choice k, = 1 and qZ = -1 gives 

U ( t ) =  (1 0 )  u = l  f = l  
0 -1 

which corresponds (by (102)) to the involutive automorphism (55). 
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5.1.2. Involutive auromophisms of AY) of type 2a with U = I such that aut ay) = 
-ay. Consideration of the most general 2 x 2 matrix U ( 1 )  that satisfies (76) leads to 
the conclusion that the most general automorphism of type 2a with U = 1 such that 
~O(ay)  = -ay corresponds to (77), where again q2 is an arbitrary non-zero complex 
number and k, is an arbitrary integer. The involutive condition (1.136) again reduces 
to U ( 1 )  V ( t - l )  = q@l ,  where q is an arbitrary non-zero complex number and k is 
an arbitraly intsger, which requires that k, = 0, but imposes no additional constraint 
on qr The other involutive condition (1.143) implies that ( = 0. Thus there is a 
family of involutive automorphisms of type 2a with U = 1 such that ~ ' ( a ! )  = -ay, 
and (by (1.69), (1.71) and (1.73)) these are: 

+ ( h e 0 )  = -heo +(he,) = - h e ,  

+(eeo) = -(q2)-1e-m0 

$(ee,) = -77,e-,, 

One special case is worth noting: 
(i) The choice k, = 0 and q, = -1 gives 

$ ( c )  = -c $(d) = -d 

+ ( e - , , )  = - (q2)- 'eeO 

+(e -e l )  = -(v2)-'e0,. 

U ( t ) =  ( -1 O 0 1)  = c  u = l  t = o  (111) 

which corresponds (by (102)) to the Cartan involution (49). 

5.2. Identification of conjugacy classes of involutive automorphisms of AY) of type 2a 
It will now be shown that there are three conjugacy classes of involutive automor- 
phisms of AY) of type 2a. These three classes contain the following Cartan-preserving 
automorphisms: 

(i) the family of type 2a involutive automorphisms (102) corresponding to 

where k, is an arbitrary odd integer, 
(i) the family of type 2a involutive automorphisms (102) corresponding to 

where k, is an arbitrary even integer; 
(iii) the family of type 2a involutive automorphisms (102) corresponding to 

(114) 

where k, is an arbitrary even integer, together with the family of type 2a involutive 
automorphisms (110) corresponding to 

(115) 
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where qz is an arbitrary non-zero complex number. 

and it will then be shown that they are disjoint. 
It will first be shown that each of these sets contain mutually conjugate elements, 

It is easily checked that with s = 51 

where 

and where K is an arbitrary integer. Clearly 
(i) if IC, is odd all then every odd power of t can appear in the matrix on the 

right-hand side of (116) by an appropriate choice of K ,  and the sign of qzska is the 
same as that of q, if s is chosen to have the value 1, but these two quantities have 
opposite signs if s = -1; 

(ii) if kz is even all then every even power of t can appear in the matrix on the 
right-hand side of (116) by an appropriate choice of n, but the signs of qzsL1 and q2 
are the same with s = fl. 

It then follows from (1.174) and (1.175) that the members of family of type 2a 
involutive automorphisms (102) corresponding to (112) are mutually conjugate via a 
type l a  automorphism, as are those of the family of type 2a involutive automorphisms 
(102) corresponding to (113). The same is true of those of the family of type 2a 
involutive automorphisms (102) corresponding to (114). 

'krning to the family of type 2a involutive automorphisms (110) corresponding to 
(115), it is easily checked that 

where 

and where 

q = (q2)'" k = 0. 

(Here q2 is an arbitrary non-zero complex number). It tk  follows fr  n (1.174) that 
r r I A y  IIIGIIIUGI "1 ,,IC lalrlrry "I Lypc Ld L l l Y U l U L l V C  d"L"IIIuIpI"3111J I"", L"rr=Jy"r."rrrE, 

to (115) is conjugate via a type l a  automorphism corresponding to the matrix s ( t )  
of (119) and s = 1 to the type 2a involutive automorphisms (102) corresponding to 

e ..^_. ........I...- ..F.L̂ .-^-:I.. ..I ...-- 1.. :....-,...:..- "...-..--..I.:"..." ,, , f ix  "---""..,."A:"" 

(121) 
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It remains only to show that the three sen listed previously are indeed disjoint 
conjugacy classes. 'Ik establish this it is sufficient to show that the type 2a involutive 
automorphisms (110) corresponding to 

(122) 

(123) 

and (121) do not form conjugate pairs. Suppose to the contrary that the automor- 
phisms corresponding to (122) and (123) are conjugate via a type l a  or type 2a 
automorphism belonging to the matrix S ( t )  and to  s = 1. Then (1.175) and (1.179) 
both imply .~ that sz = 1 and then (1.174) and (1.178) both require that 

which with t = -1 reduces to 

which can never be satisfied. 
{(121), (122)] and {(121), (123)}. 

Similar arguments can be applied to the pairs 

6. Conclusions regarding the matrix formulation of the involutive automorphisms of 
A?) 

The analysis of the previous three sections shows that A?) has seven conjugacy classes 
of involutive automorphisms. These are: 

(1) the three conjugacy classes of type l a  involutive automorphisms with U = 1 
listed in subsection 3.2, for which the representatives may be taken to be: 

(i) the identity automorphism (40), which corresponds to the type la  automor- 
phism with U ( t ) ,  U, and E being given by (74); 

(ii) the involutive automorphism (43), which corresponds to the type la automor- 
phism with U ( t ) ,  U, and F being given by (75); 

(iii) the involutive automorphism (48), which corresponds to the type la  automor- 
phism with U( t ) ,  U, and E being given by (82); 

(2) the one conjugacy class of type la  involutive automorphisms with U = -1 
described in section 4.2, for which the representative may be taken to be the involutive 
automorphism (41), which corresponds to the type la  automorphism with U ( t ) ,  U, 
and E being given by (93); 

(3) the three conjugacy classes of type 2a involutive automorphisms listed in 
section 5.2, for which the representatives may be taken to be: 

(i) the involutive automorphism ( 5 9 ,  which corresponds to the type 2a automor- 
phism with U(t), U, and E being given by (109); 

(ii) the involutive automorphism (52), which corresponds to the t y F  2a automor- 
phism with U(t), U, and E being given by (106); 
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(iii) the involutive automorphism (53), which corresponds to the type 2a automor- 
phism with U(l), U, and 

At the end of section 2 nine sets of involutive automorphisms of AY)  were listed. 
As has just been noted, the matrix formulation shows that there are only seven 
conjugacy classes of involutive automorphisms of AY),  and the analysis of sections 4 
and 5 demonstrates that the members of the sets (iii) and (iv) of section 2 are 
mutually conjugate, and that the members of the sets (viii) and (ix) of section 2 are 
also mutually conjugate. 

These results are in agreement with those obtained earlier by Kobayashi [6] for 
the derived algebra of AY) by another method. The seven conjugacy classes of invo- 
lutive automorphisms of AY) consist of the identity automorphism and six conjugacy 
classes of automorphisms of order 2. In Kobayashi's classification the six order 2 
automorphism conjugacy class representatives quoted above are (a), (a'), (c), (h"), 
(b') and (b) respectively. (Of course, as Kobayashi has only considered the derived 
algebra of AY), his analysis did not include any discussion of the action of automor- 
phisms on the scaling element d). The tables of Levstein [7] appear to omit three of 
the conjugacy classes of involutive automorphisms of AY). 

being given by (107). 
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