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Abstract. The mairix formulation of automorphisms of an affine Kac-Moody algebra

that was developed in a previous paper is here applied to the determination of all the

conjugacy classes of involutive automorphisms of the affine Kac—-Moody algebra A(ll),

where it is compared with the application of more traditional structural techniques.

1. Introduction

In a previous paper (Cornwell [1], hereafter referred to as ‘paper 1°) a general
matrix formulation of the automorphisms of untwisted affine Kac-Moody algebras

was developed. In the present paper this is applied to the special case of Agl).
This analysis has several objectives. Not only are the results of interest in their own
right, but as Agl) is the ‘simplest’ untwisted affine Kac—-Moody algebra it provides
a perfect example for testing the practical applicability of the concepts of paper 1,
and for comparing the matrix method with more traditional structural techniques. In

subsequent papers this analysis will be extended first to AS" and then to ASY) for
values of [ greater than two, but it should be noted that Ail) has special features
that are absent in AE” with { > 1, so A(ll) has to be studied separately from the rest
of the A{M family.

The notations and conventions that will be employed in the present paper are

those defined in paper 1, with the additional convention that equation labels such
as (9) and (1.9) refer to the ninth numbered equation of the present paper and

of paper 1 respectively. When the untwisted affine Kac-Moody algebra & is A(ll),
the corresponding simple Lie algebra is A,, for which the rank ! has value 1. The

generalized Cartan matrix of A{") is
2 -2
A= (_2 2 ) . (1)

The two simple roots of AE” are o and a,, and as the highest root af; of A, is
af, the relation oy = § — ay (where ayy is the extension to ¥ of af) implies that
the root § is given by

6=y + oy 2

0305-4470/92/0823354+-24$04.50 © 1992 IOP Publishing Lid 2335



2336 J F Cornwell
and so

e=hs=h,, +h,, . (3)
For these simple roots

{ag, og) = (o, ) = (ag,a‘l’)o = % 4)

and

{og, o) = {0y, @) = _%- (5)

Let T be the two-dimensional irreducible representation of A, in which

rrig=ng =3 (5 °) ©

01

(5 5) %
o v_ o _1[0 0

I‘(e_a?)_e_a?—é—(_l 0) (8)

The value of the Dynkin index of this representation is given by v = 1. This
representation is equivalent to its contragredient representation, for (1.105) holds

with
C= ((1) _01). ©)

Thus for A(ll) the set of type 1b involutive automorphisms- coincides with the set of
type 1a involutive automorphisms and the set of type 2b involutive automorphisms co-
incides with the set of type 2a involutive automorphisms. Consequently it is sufficient
to consider only type 1a and 2a involutive automorphisms. The former set divide into
two disjoint subsets with u = 1 and v = —1, whereas for the determination of the
representatives of the conjugacy classes of the latter set it is sufficient to let u = 1.

The outline of the present paper is as follows. Section 2 is devoted to the ap-
plication to A(ll) of the ideas on Cartan preserving root transformations and Cartan
preserving automorphisms described in section 2 of paper 1, the aim being to see
how far this approach can be taken in the determination of the conjugacy classes of
involutive automorphisms of Agl). As will be seen, this approach gives incomplete
information, but this deficiency is remedied in the matrix formulation of the succeed-
ing sections. In section 3 the involutive automorphisms of Agl) of type 1la with u = 1
are analysed, the investigation being extended to involutive automorphisms of type
la with ¥ = —1 in section 4 and to involutive automorphisms of type 2a in section
5. The conclusions are summarized in section 6, and compared there with previous
related work.
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2. The set of involutive root-preserving transformations of Agl)
2.1. Classification of the involutive root-preserving transformations of A(f)
When & = A{", as I = 1, (1.8) reduces simply to Q° = 26$A/(a, a%)°, and as

A?:

B3 et

of (10)

it follows from (4) that

D N_0
Q° = 2xPa! (11)
and
;0 WO _ 0 £19)
{7, 02%)° = &7 (12)

Moreover, the only root preserving transformations 7% of the simple Lie algebra
~0
¥ = A, are such that

m(a}) = eal (13)
where
e=1lor —1. (14)

Thus the involutive condition (1.19) is always satisfied, while the involutive condition
(1.20) becomes «$(¢ + p)a? = 0, which implies that

wil(e+ u) = 0. (15)
As ¢ =1 ar—1, it follows from (13) that there are only four cases to be considered:

(i) e = 1 and u = 1: in this case (15) implies that «$* = 0 and hence Q° = 0.
Clearly the only root transformation of this type is the identity transformation

a? - af §—6 Ay — A, (16)

(i) e = —1 and x = 1: in this case (15) implies that ¥ can take any integer
valugii) e =1 and g = —1: in this case (15) implies that «§ can take any integer
valu(i;:) € = —1 and p = ~1: in this case (15) implies that «¥ == 0 and hence

2% = 0. Clearly the only root transformation of this type is that associated with the
Cartan involution of (1.75) and (1.76), which may be denoted by 7-,..,, and for
which

TCartan(al) =—0y TCartan(é) =—¢ TCarta.n(AO} = _AO‘ (17)

Some special cases of involutive root-preserving transformations of types (ii) and
(iii) will now be investigated, using the fact that (12) and (13) imply that (1.12)
reduces to

() = ead - exlb. (18)
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. . 20 . . .
First, as the scaled root lattice Q°Y of L consists of all linear functionals w?®
defined on ¥° that have the form

]
Z 2uf /{ad,a2)’} o}

(where each uy (for k£ = 1,2,...,1) is allowed to take any intcger value), and as
the fundamental weights A) of #° are defined by
i
AL =D (A of

j=1

(for k =1,2,...,1), it follows that w° can be rewritten as

i
W’ =3 {2y /(al, o)’} AL

k=1
where
l v
- 0
"Ll: - Z#T (A )jk
i=1
(ffor k = 1,2,...,0). Thus the involutive root-preserving transformation = is a

member of the Weyl group of A{" if and only if
Q° = 2uT A AL /(af, a})?

where u is an integer. As A, = 2, (10) and (4) imply that Q° = 44%a9, and

comparison with (11) then shows that & = 248, Moreover, by (1.1}, as S(6) =

£ Fre nesnes O o~ OUr £l ¢thhn — Ty +ha Alinbroa ront nescass
U 1Vl CVEClY O T i, l.l.. IUIIUWD l.l.lal- ,Lb — L. 111“.3 ll-l\-t lll.\"Ull-ll-lVD lUUl-"lJIUBUIVills

transformation = is a member of the Weyl group of Al ) if and only if . =1 and
kT is an even integer.
In particular, for the Weyl reflection S

Sai(@g) = ag + 2ey (19)
and

S,,(a)) = —a, (20)
which imply (by (18)) that

e=—1 =1 n?:O. (21)
Similarly, for the Weyl reflection S, ,

San(ao) = —xg (22)
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and

Sg. (o) =20y + 0y = —a; + 26 (23)
so that (18) implies that

e=—1 p=1 &= 2. ' (24)

By contrast, for the root transformation g corresponding to the Dynkin diagram
permutation ¢, + @y,

P(ao) = o p(al) = o (25)

and thus, by (2), p(6) = 6 and p(a,) = 6 — «;. Consequently for this Dynkin
diagram permutation p (18) implies that

€= —1 p=1 K,?:l. (26)

(The fact that «§ is odd indicates that p is not a Weyl group transformation.)

The three foregoing examples have been special cases of the type (ii) root trans-
formations. Examples of type (iii) transformations may be obtained by composing
each of them with 7,,... In particular

(TCartan o Sa; )(0‘0) = -0y — 20"1 (27)
and

(TCartan o Sal)(al) = oy (28)
so that for 7¢ ... 0 55,

e=1 u=-1 n?:O. (29)
Similarly

(TCartan o Sag)(ao) = Qg (30)
and

(Tcartan @ Sap) (@) = —a; — 20y = o) — 26 (31)

$0 that for T, an © Sa,

e=1 po=-1 KT = —2. (32)
Finally

(Tcartan @ PYag) = —y (33)
and

{Tcantan © P} {1y} = —g = & = & (34)

s0 that for 7,40, © 0
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2.2. The classification of the conjugacy classes of involutive root-preserving transforma-
tions of ALY
Turning to the classification of the conjugacy classes of the group of involutive root-

preserving transformations of A(ll), (1.16)-(1.18) imply that 7| = ¢7,¢~" if and only
if

e = e, (36)
kil — e’Cn?Z =C((p, + 1)xf ' 37
and
Hi = g, (38)

Here is is assumed that r; = {70, 0,1}, 7 = {7, Qy, 1.}, and ¢ = {¢°, @, ¢},
that 0(ad) = €af, (o) = e,0f, ¢% ) = €a} (cf (13)), and that Q, =
25} ad, 9, = 263408, and @ = 2x%af (cf (11)).

Clearly (36) and (38} imply that

(1) the identity root transformation of (i) is in a conjugacy class of its own,

(2) the involutive root transformations of (ii) can only be conjugate to other root
transformations of (ii);

(3) the involutive root transformations of (iii) can only be conjugate to other root
transformations of (iii); and

(4) the root transformation 7., Of (iv) is in a conjugacy class of its own.

It remains only to show that the sets (i) and (iii) each contain two conjugacy
classes. (Tb see this consider (37) for the set (ii). The right-hand side of (37) is
always even, so if «§, is even then «§, is even, and if «{} is odd then «} is odd.
Moreover, every even value x§i can be obtained from =i}, = 0 by an appropriate
choice of ¢ and x®. Similarly, every odd value «$} can be obtained from %, = 1 by
an appropriate choice of ¢ and <. Thus the set (ii) contains two conjugacy classes.
The same arguments show that the set (iii) contains two conjugacy classes.)

These considerations show that the group of involutive root-preserving transfor-
mations of Agl) contains six conjugacy classes. At least one representative has already
been identified for each of these classes.

Each involutive root-preserving transformation of Aﬁl) corresponds to one or

more involutive automorphisms of A(ll}. However, it is possible for two involutive
automorphisms associated with involutive root transformations that are not conjugate
(as root transformations) to be conjugate within the groups of automorphisms. That
is, two Cartan-preserving automorphisms can be conjugate via an automorphism that
is not a Cartan-preserving automorphism.

The investigation of this matter will start in the next two sub-sections, but, as will
soon become apparent, the full study of the problem requires the matrix formulation.
That will be the subject of the section that follows.

. . . 1
2.3. Involutive Cartan-preserving automorphisms of A(J )

The object of this subsection is merely to list all the involutive automorphisms of AM
of the form ¥ = v, exp(ad(h’)) (where h’ € ) which correspond to each 7 of the

group of involutive root-preserving transformation of A(ll) that is listed explicitly in
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the previous subsection. It will be recalled that A’ may be assumed to satisfy (1.53),
and must be such that (1.59) holds. Also (1.31), (1.29) and (1.39) reduce (on using
(11) and (4)) to

Wlhay) = (i + eurT)hg, + (1 + cunl ~ €)h,,

w(hal) = —e,un?han + (e— cun?)hm

W(c) = pe

Y(d) = ud + ZR?hal — u(ehHie.

(39)

(1) r is the identity mapping: In this case (1.55) does not imply any restriction
on the value of A', and (1.59) implies that there are four distinct involutive auto-
morphisms which correspond to exp{ay(h’)} = 1 and exp{c (h')} = £1. These
are:

(i) exp{ey(h')} = 1 and exp{e,(h')} = 1: In this case 1 is the identity
mapping, for which

W(hoy) = ha, Ylha,) = hq,
Ple) = ¢ Y(d)=d

40
“/)(ean) = edu ‘!,L?(E_a‘]) = e-an ( )
wle,,) = e,, Ple_, ) =¢€_,,-
(i1) exp{ey(h')} = 1 and exp{e;(h’'}} = —1: In this case
Wlha,) = hy, Ylha,) = b,
Ple) = ¢ Y(d) =d (@1)
lp(eau):eao “l,f)(e_o{u)=e__mI
w(eal) = —€4, 1|b(e-cx1) =€ _a,-
(iii) exp{ay(h’)} = -1 and exp{a,(h'}} = 1: In this case
V(hy,) = ha, W(ha,) = h,,
Yie) = ¢ wd)=d @)
llb(euo) = —€q, 1’,"(e~an) = T€_a,
u,)(eal)=eo:1 w(e-—cxl)ze—al'
(iv) exp{ay(h)} = -1 and exp{c,(h")} = —1: In this case
Y(ha,) = by, Plhe,) = hg,
c) = d — d
(e} =c ¥(d) @3)

TJ'J(EQ(,) = €, 'U')(e_.ao) = €l

(e, ) = —e,, u';(e_al)z—e_a!.
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(2) 7 = §,,: It follows from (20), (19), (21) and (1.37) that the most general
h' € # that satisfies (1.55) is b’ = ky(h,, + h,,) + £4d = Kgc + k,;d (Where &,
and «; are arbitrary complex numbers), for which oy (k') = x; and a,(h’) = 0.
Consequently there are only two distinct involutive automorphisms, which correspond
to exp{a,(h')} = +1 and exp{a,(h')} = 1. These are:

(i) exp{ay(h')} = 1 and exp{c,;(A')} = 1: In this case

Wlh,,) = h,, +2h,, Ylh,, ) = —hg,
W(e) = ¢ P(d) =d

_ _ (44)
w(eao) = €ay42a, 1”[)(6—&0) - e—(ﬂo+201)
w(eal) = e-—al 11)(6—0(1) = eorl‘
(ii) exp{ag(h’}} = —1 and exp{a,(h’}} = 1: In this case
Wh,,) = hgy +2h,, (ha,) = —hg,
Yc)=c ¥(d) (45)

1'f"(“%:n) = TCap42en 1'i’(e—au) = T8 (aotl2an)

’d)(eal):e—al w(e-—al):eal'

(3) r = §,,+ It follows from (22), (23), (24) and (1.37) that the most general
h' € 3 that satisfies (1.55) is h' = (x; — 2K,)h,, + & h,, + k4d (Where &,
and x, are arbitrary complex numbers), for which ay(h’) = 0 and o,(h') = ;.
Consequently there are only two distinct involutive automorphisms, which correspond
to exp{ay(h')} =1 and exp{o,(h')} = +1. These are:

@A) exp{ey(h)} =1 and exp{a,(~')} = 1: In this case

w(hcxu) = —han d”(hal) = 2h’au + hu;
Ple)=c ¥(d) =4h, —4c+d

(46)
Y(eq,) = €_q, Y(e_qe) = €,
1’{)(601) = ©2ag4ay 1'b(e—0fl) = € (2a0tar)’
(ii) exp{ey(h’)} = 1 and exp{a,(h'}} = —1: In this case
Tﬂb(haa) = —han w(h’al) = gh‘an + hcn
WPle)=c Y(d) =4h, —4c+d
(47)

(eq,) = €y W(e_py) = €4
Wleg,) = ~erapta, 1’b(e-ﬂu) = TC(200tay)’
4y 7 = p: It follows from (25), (26) and (1.37) that the most general b/ €

H that satisfies (1.55) is h' = xo(h,, + ha,) = Kge (Where &, is an arbitrary
complex number), for which «,(h"} = 0 and «,(h’) = 0. Consequently there is only
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one distinct involutive automorphism which corresponds to exp{ay(h’)} = 1 and
exp{a,(h’)} = 1. This is:

':‘b(h,c”{o)=ho’1 w(hal)::h

Yle)=c¢ PY(d) =2h, —c+d

(48)

P(ea,) = €q, e a,) = €_q,

’»b(eal):ea,, 11b( —al)—e gt

(5) 7 = Tgaan: In this case ¥_(h') = —h' for all R’ € %, so the most general

k' € ¥ that satisfies (1.55) is A’ = 0. Consequently there is only one distinct invo-
lutive automorphism which corresponds to exp{ay(h’)} =1 and exp{a,(h")} = 1.

This is the Cartan involution ¢

¢Cartan(ha0) = _hao ¢Cartan(hq1) = "ha‘
@cartan(C) = —¢ PCactan(d) = —
quartan(ecxu) =€ d)Carta.n(e—ao) = €4,

qbCartan(eoq) = e-or; ¢Cartan(e—(x1) = ea,

(49)

(6) T = Tcurtan © 5o, - It follows from (27), (28), (29) and (1.37) that the most
general h' € g¢ that satisfies (1.55) is A’ = xh, (where «, is an arbitrary complex
number), for which oy (k') = —x,/2 and o,(h’') = k,/2. Consequently there are
only two distinct involutive automorphisms, which correspond to exp{a,(h")} =

exp{a;(h’)} = 1. These are:
(i) exp{ay(h’)} = 1 and exp{a,(h')} = 1: In this case

Tb(hau) = _h’au - Qh’al "'I")(hal) = hal
we)==c  wd)=-
"ib(eau) = e—(au+2a1) "P( —ao) - eao+201

'llb(eal):eal ’!j)( mal)':e ay”

(i) exp{agy(h')} = —1 and exp{a;(h'})} = —1: In this case

T‘-b(hau) = _hao = 2h’a, dr)(h‘al) =y
W) =—c  $d)=-—
"lb(ec(u) = _e—(ag+2al) w(e—ao) = _eao+2a1

w(eal) ~€q, I‘b(e—al) = —€_a

i

(50)

(1)

() T = Touean © Sq,: It follows from (30) (31), (32) and (1.37) that the most
general h' € 3 that satxsﬁes (1.55) is k' = ryh,,, (Where & is an arbitrary complex
number), for which o,(h') = x,/2 and a,(h’) = —k;/2. Consequently there are
only two distinct involutive automorphisms, which correspond to exp{eg(h’)} =

exp{o,(h')} = &1. These are:
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(i) exp{ag(h’)} =1 and exp{a,(h’)} = 1: In this case

d)(hau)“_“han 1[)(hal)=—2h.an—hal
PY(c) = ~c¢ Y(d) = —4h, +4c—-d

(32)
w(ean) = e&u ‘d"(e—au) - e—&n
e Y=o . . Wi e )
W€,/ T € (2ag+a;) e a1/ = Caagta,

(ii) exp{oy(h')} = —1 and exp{a,(h’)} = —1: In this case

P(hay) = kg, P(he,) = =2h,, —hg,

P(c) = —¢ P(d) = —4h, +4dc—~d

Wew) = —€ay  Yle_a) = —€ g,

¥(ey,) = —€_(2agtas) Y(e_a,) = —€a0ta

B T = Toapan © p- 1t follows from (33), (34), (35) and (1.37) that thc most
general k' € 5 that satisfies (1.55) is h' = &4(h,, — h,,) (Where &, is an arbitrary
compiex number), for which ay(A’) = k¢ and o, (h’) = -k, Consequently there
are only 2 distinct involutive automorphisms, which correspond to exp{a,(k')} =
exp{e;(h')} = £1. These are:

(i) exp{ay(h’)} = 1 and exp{c,;(h')} = 1: In this case

ul)(h'au) = _h’a1 w(hcxl) = _h’an
= — d = ‘—2’10, + - d
14')(0) c 'Ji’( ) ) € (54)
14’)(ean) = e—cu w(e-—ﬂ'o) = EO(I
w(ea;) = e—au d’(e—al) = eaﬂ'
(ii) exp{ag(h')} = =1 and exp{a,(h')} = =1: In this case
'l,b(hau) = _hal w(hal) = -hao
v’)(C) c u’( ) a1+ c (55)
w(eau) = —€_ga, w(e—au) = =€,
1,(')(&01) = T€_pny 'U‘)(e_al) = T€uy

2.4. Preliminary investigation of the conjugacy classes of involutive automorphisms of
A

The object of this subsection is to investigate what can be achieved in the study of
the conjugacy classes of involutive automorphisms of A{IU using structural methods
alone. The starting point is the observation by Gantmacher [2] that every inner au-
tomorphism of a semi-simple Lie algebra (including those associated with the Weyl

refiections) is conjugate to ‘chief inner automorphism’ of the form exp{ad(h’)} (for
some h' of its Cartan subalgebra). However, a chief inner automorphism cannot be



Involutive automorphisms of 4" 2345

conjugate to an automorphism associated with a Weyl reflection via a Cartan preserv-
ing automorphism (as in (1.56)), because this requires that the corresponding root
transformations must be conjugate, which is impossible as exp{ad{%’}} corresponds
to the identity root transformation, which, as noted earlier, is in a class of its own.
The first stage is to determine explicitly the non-Cartan-preserving automorphism
that conjugates the involutive automorphism 1%, of the simple complex Lie algebra
A, corresponding to r® = 5%, to a chief inner automorphism of A,. In fact this

non-Cartan-preserving automori)hism has been found previously (Cornwell [3, 4]) for
other reasons. Denoting it by che, all that is required is to trapslate the previously

quoted form into the conventions of paper 1 {and of Cornwell [5]), in which it
becomes

Vo‘lr = exp{ad(ia{egg —e’ o0} (56)

o 1
where
a=n/{8{ad,ad)’}/? = L. (57)
Then
Via(eds + el o) = ~2ihgg
VE(i(elg = €2 o)) = i(elg — % 4) (58)
Vi(ihge) = 4(ely + elgg)-

With the involutive automorphism ¢, of the simple complex Lie algebra A, corre-
spoading to 7% = .S'f)"‘l> being defined by

w‘la(h?,,u) = —hgg
GRENEL (59
14520(30_9,?) = efic;-
it is easily checked that by acting with both sides on hg.],, egg, and efqg in turn that
Vi o ¥l o (Vi) ™! = explad(4”)) (60)
where 2% is such that
exp{a(h®)} = -1 (61)

which establishes the conjugacy stated earlier.
The next stage is to extend these ideas to the Kac-Moody algebra A‘ln. Let v,bfi,*
be the two automorphisms of A§‘) that are obtained from %, by the definitions

W (¢ @ ) = (£1)'t @ ¥lo(a”) €2
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(for all a® € A, and every integer j7),

PiE(e)=c (63)
and

Via(d) =d. (64)

Then 2% and 27 are the two involutive automorphisms of A(ll) that are associated
with the Weyl reflection S, and which were listed previously as (44) and (45)

respectively. Similarly, let V£§'+ be the automorphism of A(ll) that is obtained from
VY, by the definition

VI ©a") = ¥ V(e (65)

(for all a® € A, and every integer j),

Vid(e)=c (66)
and

Vad(d) = d. (67)
Then

Vot odis o (V) = exp{ad(ht)} (68)

where hi’ are elements of # such that
exp{ag(h*)} = -1  exp{o;(h*)}=F1. (69)

This establishes that the automorphisms (44) and (45) associated with the Weyl re-
flection S, are conjugate to the automorphisms (43) and (41) respectively.

The Cartan involution ¢, ., Of A&l) of (1.75), (1.76) and (49) can be treated in
a similar way. As

¢Cartan(tj ® au) = t—J ® (¢UCartan(ao)) (70)

(for all a® € A, and every integer j), where ¢2,,,,, i the Cartan involution of A,

which actually coincides with the involutive automorphism %, of the simple complex

Lie algebra A; corresponding to r° = S?, that was defined by (59), it follows from
1

(60) that
V.2 © Gartan © (Vo) 7' @ a%) = 177 @ (exp{ad(h*)}(a?))  (7D)

(for all a® € A4, and every integer j). Consequently Vé’? © dcaran © (Vfg)_l is
identical to the automorphism (51) that is associated with the root transformation
T = Teartan @ Sg,r 50 Peogran 1S CONjugate to (51).

oy’



Involutive automorphisms of AE n 2347

Because the Weyl reflections S, and S, are conjugate via root transformation
p corresponding to the Dynkin diagram permutation «, «— «, of (25), the automos-
phisms (44) and (45) associated with S, are conjugate via the corresponding auto-
morphism (48) to the automorphisms (46) and (47) associated with S, . Similarly,
the automorphisms (50) and (51) associated with 7., o S, are conjugate via the
automorphism (48) to the automorphisms (52) and (53) associated with 7¢, a0 Sy, -

These arguments allow one to deduce the following sets of conjugate involutive
automorphisms of A{*):

(1) (40) (which is certainly in a class of its own as it is the identity);

(i) (41), (45), (47);

(i) (42);

(iv) (43), (44), (46);

() (48);

(vi) (49), (51), (53);

(vil) (50), (52);

(viii) (54); and

(ix) (S).
However, it remains to be determined whether these sets form disjoint classes. As the
method just given relies heavily on inspired guesswork, it does not provide a systematic
means of establishing whether two automorphisms are conjugate. Fortunately the
matrix formulation does provide such a systematic treatment, as will be demonstrated
in the following sections. Indeed the matrix formulation will show that there are
only seven conjugacy classes of involutive automorphisms of A(ll), and the analysis of
sections 4 and 5 wil] demonstrate that the members of the above sets (iii) and (iv) are
mutually conjugate, and that the members of these sets (viii) and (ix) are mutually
conjugate.

3. Study of the involutive automorphisms of Agl) of type la withu =1

3.1. Determination of the involutive automorphisms of ASI) of type la with u = 1

As mentioned in section 2 of paper 1, every conjugacy class of involutive automor-
phisms of &£ contains at least one Cartan-preserving involutive automorphism. For

Z= AEI) each such Cartan-preserving involutive automorphism is associated with a
root transformation 7% of A, such that 7% af) = £aJ. These two cases will first be
considered separately:

3.1.1. Involutive automorphisms of AY) of type 1a with u = 1 such that r°(a?) = al.
The most general 2 x 2 matrix U(¢) that satisfies

U(t)hg?U(t)‘l = hg.: (72)

with both U(#} and U(¢)~! having entries that are Laurent polynomials in ¢ is given

by
_(mth 0
v = ( 0 s
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where n} and 7} are arbitrary non-zero complex numbers and k{ and k} are arbitrary
integers. However, (1.111) shows that (ng)“lt"k'1U(t) and U(t} both give the same
automorphism, so on putting 7, = (73)/(n}) and k, = ki, — k}, it follows that
the most general automorphism of type la with w = 1 such that 7%(a)) = of?
corresponds to

uu):(é )

where 1, is an arbitrasy non-zero complex number and &, is an arbitrary integer. The

involutive condition (1.136) now reduces to U(¢)® = nt*1, where 5 is an arbitrary

non-zero complex number and k is an arbitrary integer, which implies that k&, = 0

and 1, = 1. Thus there are only two involutive automorphisms of type 1a with

u = 1 such that 7%(af) = af, and (by (1.67), (1.71), (1.73)) and (1.141)) these are:
(i) the identity automorphism (40), which corresponds to

% ) (73)

1 0
U(t)_(o 1) u=1 £=0 (74)
(ii) the involutive automorphism (43), which corresponds to
1 0 _ _
U(t)_(o _1) u=1  £=0. (75)
3.1.2. Involutive automorphisms of A" of type 1a with u = 1 such that °(a?) = —af.

The most general 2 x 2 matrix U(t) that satisfies
U(t) WU (1)~ = ~hg, (76)

with both U(t) and U(¢)~! having entries that are Laurent polynomials in ¢ is given

by
_{ 0 mth
v = (nét"5 0

where 7] and #} are arbitrary non-zero complex numbers and k] and ki, are arbitrary
integers. However, (1.111) shows that (n’l)“lt‘*':U(t) and U(t) both give the same
automorphism, so on putting 7, = (n3)/(n}) and k, = ki) — ki, it follows that
the most general automorphism of type la with v = 1 such that 7%a?) = —af
corresponds to

vy ={, % o) @

where 7, is an arbitrary non-zero complex number and k, is an arbitrary integer. The
involutive condition (1.136) again reduces to U(?)* = nt* 1, where 7 is an arbitrary
non-zero complex number and k& is an arbitrary integer, but this now imposes no
additional constraints on k, and 7,. However the involutive condition (1.138) implies
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that £ = —(k,)% Thus there is a family of involutive automorphisms of type 1a with

u = 1 such that r%(a?) = —al. By (L67), (L71), (1.73) and (1.141) these are:

Wlho, )= (1 — k)b, + (2 - ky)hg,
Ylhe, ) = kyh, + (ky—1)h,,

Y(e) = ¢

P(d) = 2k2hm — (kz)zc + d

Wleay) = —(12) " €0 ko +(2- ka)as
Yle_a,) = =Ml (1 ky)ao—(2-ka)a
Y(ea,}) = —Mh€h,a0+(ks-1)a,

Yle_,,) = —(nz)_le—k,an-(kz-l)al .

(78)

Comparison with (39) shows that this corresponds to the involutive automorphism

considered in the previous section with
e=—1 &=k, p=1.

Three special cases are worth noting:
(i) The choice k, == 0 and n, = —1 gives

U(t):(_‘:’1 ‘1)) u =1 £=0

which corresponds (by (78)) to the involutive automorphism (44);
(ii) The choice k, = 2 and n, = —1 gives

U(t):(_(;z (1]) u=1 £=—4

which corresponds (by (78) to the involutive automorphism (46);
(iii) The choice k, = 1 and 7, = —1 gives

U(t)=(_0t (1}) u=1 £=-1

which corresponds (by (78)) to the involutive automorphism (48).

(79)

(80)

(81)

(82)

3.2. Hdentification of conjugacy classes of involutive automorphisms of A(Il) of type la

with u = 1

It will now be shown that there are three conjugacy classes of involutive automor-
phisms of Agl) of type 1a with u = 1. These three classes contain the following

Cartan-preserving automorphisms:

(i) the identity automorphism (40), which corresponds to the type la automor-

phism with U(t}, u, and £ being given by (74}.
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(i) the family of involutive automorphisms (78) corresponding to the type la
autornorphism with

wo=(,t) -

where 7, is an arbitrary non-zero complex number and k, is an arbitrary even integer,
together with the involutive automorphism (43), which corresponds to

il
—

£ = ~(k,)* (83)

um:(é _01) u=1 £=0 (84)

(iii) the family of involutive automorphisms (78) corresponding to the type la
automorphism with

v =(,% o) v

where 5, is an arbitrary non-zero complex number and k, is an arbitrary odd integer.

It is clear that the identity automorphism is in a class of its own, so attention will
be concentrated on establishing that the other two sets just quoted do indeed form
conjugacy classes.

Il
—

£ = —(ky)? (85)

Firstly, as
sy (, % ) s =at (3 ) )
with
_ (1 (m)7'3t%)2
sio= (1 " 5aall,) )
where
n=(m)? k=ik (83)

and as all the entries of the matrix S(¢) of (87) are Laurent polynomials in £ if k,
is even, it follows from (1.158) that if k, is even the involutive automorphism (78)
corresponding to (83) is conjugate to the involutive automorphism (43) corresponding
to (84) via a type 1a automorphism belonging to the matrix S(¢) of (87) and to s = 1.

Turning to the case in which k, is odd, it is clear that the argument that has just
been given fails, for some of the entries of the matrix §(¢) of (87) are no longer
Laurent polynomials in . However, as

s (, % o) sy =ntt (5, §) (89)

ﬂzth

with

0
5= (5 igqpiesnys) e
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where
n=i(n)?  k=1{k,-1) (1)

and as all the entries of the matrix S(t) of (90) are Laurent polynomials in t if
k, is odd, it follows from (1.158) that if k, is odd the involutive automorphism (78)
corresponding to (83) is conjugate to the involutive automorphism (48) corresponding
to (82) via a type 1a automorphism belonging to the matrix S(¢) of (90) and s = 1.

It remains only to show if k, is an odd integer then none of the involutive
automorphisms (78) corresponding to (85) can be conjugate via a type la or 2a au-
tomorphism to the involutive automorphism (43) corresponding to (84). This follows
from (1.158) and (1.178), for both of these conjugacy conditions can be cast in a form
which would require that the matrix U(¢) of (85) be equivalent through a similarity
transformation to a diagonal matrix with diagonal entries that are Laurent polynomi-
als in t. This requires that the matrix U(t) of (85) must have eigenvalues that are
Laurent polynomials in ¢, which is not possible if k, is odd.

)

4. Study of the involutive automorphisms of A(ll of type la with u = —1

4.1. Determination of the involutive automorphisms of A(f) of type la with u = 1

As in the previous section the Cartan-preserving involutive automorphisms associated
with the root transformations 7° of A, such that 7%(af) = % and 7%(a?) = -af

will first be considered separately:

4.1.1. Involutive automorphisms of A\ of type la with v = —1 such that r°(a?) =
aY. Consideration of the most general 2 x 2 matrix U(t) that satisfies (72) again
Jeads to the conclusion that the most general automorphism of type la with u = —1
such that 7% ad) = ! corresponds to (73), where again 7, is an arbitrary non-zero
complex number and &, is an arbitrary integer. The involutive condition (1.136) now
reduces to U($)U(~t) = nt*1, where 7 is an arbitrary non-zero complex number
and k is an arbitrary integer, which implies that k, = 0 and n, = +1. Thus there are
only two involutive automorphisms of type 1a with © = —1 such that r%af) = af,
and (by (1.67), (1.71), (1.73) and (1.138)) these are:
(i) the involutive automorphism (42), which corresponds to

um:(}) (1’) u==-1 €=0 (92)

(ii) the involutive automorphism (41), which corresponds to

U(t) = ((1) _01) u=-1  £=0. (93)
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4.1.2. Involutive automorphisms of Agl) of type la with v = —1 such that °(al) =
-af. Consideration of the most general 2 x 2 matrix U(¢) that satisfies (76) again
leads to the conclusion that the most general automorphism of type 1a with « = —1
such that 7% af) = af corresponds to (77), where again #, is an arbitrary non-zero
complex number and k, is an arbitrary integer. The involutive condition (1.136) again
reduces to U(t)U(-t) = nt*1, where 7 is an arbitrary non-zero complex number
and k is an arbitrary integer, but although this imposes no additional constraint 7,
it does require that k, must be even. The other involutive condition {1.138) again
implies that £ = —(k,)? Thus there is a family of involutive automorphisms of type
la with v = —1 such that 7% a?) = —al. By (1.67), (1.71) and (1.73) and (1.138)
these are:

Ylha,) = (1= ky)h,, +(2 = ky)h,,
1[;(hal) = kyh,, + (ky — l)hal
Y(e) =c
P(d) = 2k2ha1 = (k2)2c +d
-1 44
Ylea,) = (M) 7 e ky)aot(2-ka)on
Y€ ag) = M€ (1oky)ao—(2—ka)as
(ey,) = ~M2Chnot(ka-1)a
Ple_o,) = ~(M) 7 e tyao—(ka=1)ar-

Comparison with (39) shows that this again corresponds to the involutive automor-
phism considered in the section 2 with the identification (79). Two special cases are
worth noting:

(i) The choice k, = 0 and n, = —1 gives

U(t)=(_°1 (1]) u=1 £=0 (95)

which corresponds (by (94)) to the involutive automorphism (45);
(iiy The choice k, = 2 and 5, = 1 gives

um:(to2 (1)) w=1  E=-4 (96)
which corresponds (by (94)) to the involutive automoerphism (47).

4.2. Identification of conjugacy classes of involutive automorphisms of AS” of type la
with u = —1

1t will now be shown that there is only one conjugacy class of involutive automorphisms
of A(ll) of type 1a with u = —1. This contains of all the involutive automorphisms
listed in the previous subsection.

This result can be established in two stages. First, with &, even (as it must be
here), the matrix S(¢) of (87) is such that $(¢) = §(~1}, so

50 (00 o) s =nt (5 %) ©7)

"?ztk:'
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is satisfied with the matrix S(t) of (87) and with n and k given by (88). As all the
entries of the matrix S(¢) of (87) are Laurent polynomials in ¢ if &, is even, it follows
from (1.158) that the involutive automorphism (94) corresponding to

U = (n;jk, é) w=-1  £= (k) (98)

(where 7, is an arbitrary non-zero complex number and k, is an arbitrary even
integer) is conjugate to the involutive automorphism (41) corresponding to (93) via a
type 1a automorphism belonging to the matrix S(¢} of (87) and to s = 1.

The second stage is to show that the involutive automorphism (42) corresponding
to (92) is conjugate to the involutive automorphism (41) corresponding to (93). As

s (g 7)se-mr=at (3 0) ©9)
with

S(t) = (3 (1]) (100)
where

n=0 k=0 (101)

it follows from (1.158) that the involutive automorphism (42) corresponding to (92)
is conjugate to the involutive automorphism (41) corresponding to (93) via a type la
automorphism belonging to the matrix S(¢) of (100) and s = 1.

5. Study of the involutive automorphisms of 4{" of type 2a (with u = 1)

5.1. Determination of the involutive automorphisms of AS” of type 2a (with v = 1)

As in the previous two subsections the Cartan-preserving involutive automorphisms
associated with the root transformations 7° of A, such that 7%(af) = of and
19(al) = -af will first be considered separately:

5.1.1. Involutive automorphisms of A\" of type 2a with u = 1 such that = ald) = af.
Consideration of the most general 2 x 2 matrix U(¢) that satisfies (72) leads to the
conclusion that the most general automorphism of type 2a with « = 1 such that
%a?) = ! again corresponds to (73), where again n, is an arbitrary non-zero
complex number and k-, is an arbitrary integer. The involutive condition (1.142) now
reduces to U(t) U(1~!) = nt*1, where n is an arbitrary non-zero complex number
and k is an arbitrary integer, which implies that n, = £1 but that k, can take
any integer value. The other involutive condition (1.143) implies that { = (k,)2



2334 J F Cornwell

Thus there is a family of involutive automorphisms of type 2a with « = 1 such that
(a]) = a}, and (by (1.69), (1.71) and (1.73)) these are:

Ylho,) = (ky— Dhy, + (ky = 2)h,,

‘U’-’(ha,) = _k'zhao +(1- k2)hm

P(e) = -c

W(d) = -2kyh,, + (ky)’c—d
(102)
Peqy) = Ma€ka—1)ao+(ka—2)a
Wle_ay) = (M) e (hym1)au—(ka=2)as
T'D(ecu) = (n2)-1e-k3ao+(1—kg)a1
1.[)(8_01) = M2€kya0—(1-kz)ay "

Comparison with (39) shows that this corresponds to the involutive automorphism
considered in the previous section with

e=1 k¥ = —k, po=—1. (103)
Six special cases are worth noting:
(i) The choice k, = 0 and 7, = 1 gives

U(t):({l) (1’) u=1 £=0 (104)

which corresponds (by (102)) to the involutive automorphism (50).
(i) The choice k, = 0 and 5, = —1 gives

u(t) = ((1) _01) w=1 £=0 (105)

which corresponds (by (102)) to the involutive automorphism (51).
(iii) The choice k, = 2 and 0, = 1 gives

U(s) = ((1) f-_,) u=1 E=4 (106)

which corresponds (by (102)) to the involutive automorphism (52).
(iv) The choice k, = 2 and 0, = —1 gives

u(t) = ((1) -012) u=1 €£=4 (107)

which corresponds (by (102)) to the involutive automorphism (53).
(v} The choice k, = 1 and 5, = 1 gives

upy= (L ©° w=1 E=1 (108)
0 i
which corresponds (by (102)) to the involutive automorphism (54) '
r AN A 27 r 5 s
{vi) The choice k, = 1 and 7, = ~1 gives

U(f)=({1) _Ot) u=1 =1 (109)

which correspands (by (102)) to the involutive automorphism (355).
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5.1.2. Involutive automorphisms of A of type 2a with w = 1 such that %(a?%) =
—a¥. Consideration of the most general 2 x 2 matrix U(t) that satisfies (76) leads to
the conclusion that the most general automorphism of type 2a with u = 1 such that
% a?) = —af corresponds to (77), where again 5, is an arbitrary non-zero complex
numbet and k, is an arbitrary integer. The involutive condition (1.136) again reduces
to U(t) U(t™!) = nt*1, where 5 is an arbitrary non-zero complex number and k is
an arbitrary integer, which requires that k, = 0, but imposes no additional constraint
on 7, The other involutive condition (1.143) implies that £ = 0. Thus there is a
family of involutive automorphisms of type 2a with « = 1 such that 7%(a) = —af,
and (by (1.69), (1.71) and (1.73)) these are:

w(h‘ag) = _h‘au w(h‘al) = _hcn
(c) = —c Y(d) = —d

-1 1 110)
Tb(emo) = _-(7?2) e—cxo w(e—ao) = _(n2) e(xa
W(eq,) = ~The g, ble_q,) = —(m) 7 e,, -
One special case is worth noting:
(i) The choice k, = 0 and n, = -1 gives
U(z)—_-(_ol é):c u=1  £=0 (111)

which corresponds (by (102)) to the Cartan involution (49).

5.2. Hentification of conjugacy classes of involutive automorphisms of A(II) of type 2a

It will now be shown that there are three conjugacy classes of involutive automor-

phisms of A{ll} aof type 2a. These three classes contain the following Cartan-preserving
automotphisms:
(i) the family of type 2a involutive automorphisms (102) corresponding to

uW={g ) w=1 E=(k (112)

where k, is an arbitrary odd integer,
(i) the family of type 2a involutive automorphisms (102) corresponding to

U(t)=(é ﬁ,) u=1 &= (k)? (113)

where k, is an arbitrary even integer;
(iif) the family of type 2a involutive automorphisms (102) corresponding to

0O=(g pu) w=1 E=lhy (114)

where k, is an arbitrary even integer, together with the family of type 2a involutive
automorphisms (110) corresponding to

um:(no2 é) wu=1  £=0 (115)
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where 7, is an arbitrary non-zero complex number.

It will first be shown that each of these sets contain mutually conjugate elements,
and it will then be shown that they are disjoint.

It is easily checked that with s = +1

S) (5 oyt ) SEHNT= (5 i) 016

where

5(1) = ((1) ﬁ) (117)

and where « is an arbitrary integer. Clearly

(i) if k, is odd all then every odd power of ¢ can appear in the matrix on the
right-hand side of (116) by an appropriate choice of «, and the sign of 7,s** is the
same as that of 7, if s is chosen to have the value 1, but these two quantities have
opposite signs if s = —1;

(i) if &k, is even all then every even power of ¢ can appear in the matrix on the
right-hand side of (116) by an appropriate choice of «, but the signs of n,s*? and 1,
are the same with s = £1.

It then follows from (1.174) and (1.175) that the members of family of type 2a
involutive automorphisms (102) corresponding to (112) are mutually conjugate via a
type 1a automorphism, as are those of the family of type 2a involutive automorphisms
(102) corresponding to (113). The same is true of those of the family of type 2a
involutive automorphisms (102) corresponding to (114),

Turning to the family of type 2a involutive automorphisms (110) corresponding to
(115), it is easily checked that

S(t)(:;g (1})(5(3“21'1))‘1=ntk({1] _01) (118)
where
1 -1/2
s(lt)=(_(ﬂ2)_1,2 ("2)1 ) (119)
and where
n={(n)""*  k=o0. (120)

(Here 1, is an arbitrary non-zero complex number). It then follows from (1.174) that

Furs

to (115) is conjugate via a type la automorphism corresponding to the matrix S(1)
of (119) and s = 1 to the type 2a involutive automorphisms (102) corresponding to

u(y) = ((1) _?1) u=1 £=0. (121)
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It remains only to show that the three sets listed previously are indeed disjoint
conjugacy classes. To establish this it is sufficient to show that the type 2a involutive
automorphisms (110) corresponding to

um:(}) 2) w=1 £=0 (122)

U(t):(é [t)) u=1 E=1 (123)

and (121) do not form conjugate pairs. Suppose to the contrary that the automor-
phisms corresponding to (122) and (123) are conjugate via a type la or type 2a
automorphism belonging to the matrix S(t) and to s = 1. Then (1.175) and (1.179)
both imply that s> = 1 and then (1.174) and (1.178) both require that

s (5 1) = (5 9)

which with ¢t = —1 reduces to
£1 0% -1 1 0
(-0 o) SEDT=a-D, )

which can never be satisfied. Similar arguments can be applied to the pairs
{(121), (122)} and {(121), (123)}.

6. Conclusions regarding the matrix formulation of the involutive automorphisms of

4V

The analysis of the previous three sections shows that AE” has seven conjugacy classes
of involutive automorphisms. These are:

(1) the three conjugacy classes of type 1a involutive automorphisms with u = 1
listed in subsection 3.2, for which the representatives may be taken to be:

(i) the identity automorphism (40), which corresponds to the type la automor-
phism with U(#), u, and £ being given by (74);

(ii) the involutive automorphism (43), which corresponds to the type la automor-
phism with U(t), u, and £ being given by (75);

(iii) the involutive automorphism (48), which corresponds to the type la automor-
phism with U(#}, u, and £ being given by (82);

(2) the one conjugacy class of type la involutive automorphisms with v = —1
described in section 4.2, for which the representative may be taken to be the involutive
automorphism (41), which corresponds to the type 1a automorphism with U(t), w,
and ¢ being given by (93);

(3) the three conjugacy classes of type 2a involutive automorphisms listed in
section 5.2, for which the representatives may be taken to be:

(i) the involutive automorphism (55), which corresponds to the type 2a automor-
phism with U(t), u, and £ being given by (109);

(ii) the involutive automorphism (52), which corresponds to the type 2a automor-
phism with U(t), u, and £ being given by (106),
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(iii) the involutive automorphism (53), which corresponds to the type 2a automor-
phism with U{t), u, and £ being given by (107).

At the end of section 2 nine sets of involutive automorphisms of A(ll) were listed.
As has just been noted, the matrix formulation shows that there are only seven
conjugacy classes of involutive automorphisms of A", and the analysis of sections 4
and 5 demonstrates that the members of the sets (iii) and (iv) of section 2 are
mutually conjugate, and that the members of the sets (viii) and (ix) of section 2 are
also mutually conjugate.

These results are in agreement with those obtained earlier by Kobayashi [6] for

the derived algebra of A!" by another method. The seven conju acy classes of invo-
8 i oy Jug

lutive automorphisms of A(ll) consist of the identity automorphism and six conjugacy
classes of automorphisms of order 2. In Kobayashi's classification the six order 2
automorphism conjugacy class representatives quoted above are (a), {a'), {(c), (b"),
(b} and (b) respectively. (Of course, as Kobayashi has only considered the derived

algebra of A(ll), his analysis did not include any discussion of the action of automor-
phisms on the scaling element d). The tables of Levstein [7] appear to omit three of

the conjugacy classes of involutive automorphisms of AS”.

References

[1] Cornwell J F 1992 J Phys. A: Math. Gen. 25 2311

[2] Gantmacher F R 1939 Rec. Math. (Mat. Sborik) N. 5. 5(47) 217-50

[3] Comweli I F 1975 J Math. Phys. 16 1992

{4] Cornwell J F 1979 1 Math. Phys. 20 547

[5] Cornwell J F 1984 Group Theory in Physics vol Il (London: Academic)

[6] Kobayashi Z 1986 Proc. 19th Symp. on Ring Theory (Matsumoto, Japan, 1986) ed Y Iwanaga
(Okayama, Japan: Department of Mathematics, Okayama University) pp 5-10

[7) Levstein F 1988 J Alg 114 489-518



